PHOTOCHEMICAL, THERMAL, AND COTPP-CATALYZED DECOMPOSITION OF 2-PYRAZINONE 3,6-ENDOPEROXIDES. NOVEL SYNTHESIS OF THE UNSYMMETRICAL IMIDES

Takehiko NISHIO,* Naoko NAKAJIMA, Masaji KONDO, and Yoshimori OMOTE Department of Chemistry, University of Tsukuba, Sakura-mura, Niihari-gun, Ibaraki 305

Photochemical, thermal, and CoTPP-catalyzed decomposition of 2-pyrazinone 3,6-endoperoxides, which were readily obtained by the reaction of 2-pyrazinones with singlet oxygen, gave the unsymmetrical imides in moderate to high yields.

We previously reported that the irradiation of 2-pyrazinone 3,6-endoperoxides $(\underline{1})$ in alcohol afforded the amide derivatives $(\underline{2})$. The unsymmetrical imide $(\underline{3})$ was assumed to be an intermediate for the formation of 2.

Ph Ph
$$(R=Me, Et)$$

$$\frac{h\nu/ROH}{(R=Me, Et)}$$

$$\frac{0}{Ph-C-0-C-OR}$$

$$\frac{1}{2}$$

$$\frac{1}{(R^2=H)}$$

$$\frac{2}{2}$$

$$(R^2=H)$$

We describe here the photochemical, thermal, and CoTPP-catalyzed decomposition of the 2-pyrazinone 3,6-endoperoxides (1) and the novel synthesis of unsymmetrical imides (3). When the 2-pyrazinone 3,6-endoperoxide (1a) 2) was irradiated in dichloromethane in a Pyrex tube with a high pressure mercury lamp under argon, the unsymmetrical imide, N-benzoyl-N-pyruvaloylmethylamine (3a) [bp 105-108 °C/2 Torr; IR(film) 1680, 1310, 790, 710, and 690 cm $^{-1}$; $^{1}\text{H-NMR}(\text{CDCl}_{\overline{3}})$ δ 2.38 (s, 3H), 3.26 (s, 3H), 7.23-7.88 (m, 5H); $^{13}\text{C-NMR}(\text{CDCl}_3)$ & 25.8(q), 32.9(q), 128.8(d), 128.9(d), 133.0 (d), 133.8(s), 171.3(s), 173.5(s), 194.4(s)] was obtained in 33% yield along with benzonitrile. The unsymmetrical imide (3a) thus obtained reacted with methanol at 45 °C to yield the amide derivative (2a: R=Me, R²=Me) (26%). Similarly, irradiation of 2-pyrazinone 3,6-endoperoxides (lb-g) gave the unsymmetrical imides (3b-g) in 21-60% yields. The formation of 3 could be readily explained in terms of electrocyclic ring opening of 1 with a loss of the corresponding nitriles. Furthermore, the unsymmetrical imides (3) were also obtained by the thermal reaction of 1. pyrazinone 3,6-endoperoxides (1) were heated to reflux in toluene to give the unsymmetrical imides (3) in moderate yields accompanied with the corresponding nitriles (15-60%). An interesting reaction was observed in the 2-pyrazinone 3,6-endoperoxide (le). The endoperoxide (le) was refluxed in toluene to give the unsymmetrical imide (3e) (20%) and the parent 2-pyrazinone (4) (69%) with a liberation of singlet oxygen. The endoperoxides (3), when heated to their respective melting points, also gave the unsymmetrical imides (3) in high yields. Recently, catalytic rearrangement of bicyclic 1,4-endoperoxides was found with cobalt meso-tetraphenylporphine (CoTPP) by Foote et al. 6) This sequence represents a synthetically useful route from 1,3-dienes to diepoxides under mild conditions. We applied this method

for the synthesis of unsymmetrical imides $(\underline{3})$ by the decomposition of $\underline{1}$. Treatment of $\underline{1}$ with 5 mol% CoTPP in dichloromethane at room temperature gave the unsymmetrical imides $(\underline{3})$ in high yields along with the corresponding nitriles (65-80%).

1_	R ¹	R ²	R ³
<u>a</u>	Me	Me	Ph
<u>b</u>	Me	Et	Ph
<u>c</u>	Me	Pr	Ph
<u>d</u>	Me	Pr ⁱ	Ph
<u>e</u>	Me	Ph	Ph
<u>f</u>	Me	Me	Me
<u>g</u>	Et	Et	Ph

Table 1. Yield of Unsymmetrical Imides (3) (%)

Photolysis Thermolysis CoTPP- $A^{a)} B^{b)} cataly$ 3a 33 70 > 95 93

		A"/	B ²	catalyzed
<u>3a</u>	33	70	>95	93
3b 3c	47	50	>95	71
<u>3c</u>	60			
<u>3d</u>	21	46	>95	94
<u>3e</u>	44	20 (69	9) ^{c)} >95	92
3d 3e 3f 3g	52			
<u>3g</u>	40			

a) Refluxed in toluene. b) Heat in a melt at higher temperature than mp. c) Yield in parenthesis is for l-methyl-3,5,6-triphenyl-2-pyrazinone (4).

Many papers concerning the preparation of the symmetrical imides have been reported, $^{7)}$ however, those of the unsymmetrical imides are few. $^{8)}$ The reactions described here would be the convenient method for the synthesis of unsymmetrical imides $(\underline{3})$, since the starting endoperoxides $(\underline{1})$ are readily prepared from the 2-pyrazinone with singlet oxygen and indefinitely stable when stored in the solid at room temperature.

References

- 1) T. Nishio, N. Nakajima, M. Kondo, Y. Omote, and M. Kaftory, J. Chem. Soc., Perkin Trans. 1, 1984, 391. In these photochemical reactions, the unsymmetrical imide, N-benzoyl-N-oxaloylmethylamine (3: R¹=Me, R²=H, R³=Ph), could not be isolated even when the irradiation was carried out in aprotic solvents such as dichloromethane, chloroform, and benzene.
- 2) The 2-pyrazinone 3,6-endoperoxides $(\underline{1})$ were readily prepared from the corresponding 2-pyrazinones with singlet oxygen.
- 3) All new compounds gave satisfactory spectral and microanalytical data.
- 4) Singlet oxygen thus liberated was trapped with 1,3-diphenylisobenzofuran $(\underline{5})^{5}$:
 A solution of the endoperoxide ($\underline{1e}$) and $\underline{5}$ in toluene was refluxed to give the imide ($\underline{3e}$) (trace), 1,2-dibenzoylbenzene (52%), and the 2-pyrazinone (4) (47%).
- 5) H.H. Wasserman, J.R. Sheffer, and J.L. Cooper, J. Am. Chem. Soc., 94, 4991(1972).
- 6) D. Boyd, C.S. Foote, and D.K. Imagawa, J. Am. Chem. Soc., 102, 3641 (1980).
- 7) O.H. Wheeler and O. Rasado, "The Chemistry of Amides," ed by J. Zabicky, Interscience Publishers, London (1970), p.335.
- 8) J. Vecemans and G. Hoornaert, Tetrahedron, 36, 943 (1980).

(Received November 19, 1984)